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Cooperative dynamics in auditory brain response
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Simultaneous estimates of activity in the left and right auditory cortex of five normal human subjects were
extracted from multichannel magnetoencephalography recordings. Left, right, and binaural stimulations were
used, in separate runs, for each subject. The resulting time series of left and right auditory cortex activity were
analyzed using the concept of mutual information. The analysis constitutes an objective method to address the
nature of interhemispheric correlations in response to auditory stimulations. The results provide clear evidence
of the occurrence of such correlations mediated by a direct information transport, with clear laterality effects:
as a rule, the contralateral hemisphere leads by 10–20 ms, as can be seen in the average signal. The strength
of the interhemispheric coupling, which cannot be extracted from the average data, is found to be highly
variable from subject to subject, but remarkably stable for each subject.@S1063-651X~98!07511-4#

PACS number~s!: 87.40.1w, 05.60.1w, 84.35.1i
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I. INTRODUCTION

Two emergent properties of complex systems are col
tivity and chaos. Both properties are relevant for biologi
systems, which some believe are balanced at the interfac
collectivity and chaos@1#. The brain itself has been describe
in these terms, particularly its tendency to diversity and
ability of generating coherent patterns of activity, switchi
continuously from one to another. These properties are
expected to be very useful for describing how local corti
specialization is efficiently coordinated by functional glob
integration mechanisms@2#. Implicit in any such explanatory
description is the brain’s activity on various space and ti
scales.

A quantitative understanding of the hierarchy of the u
derlying structures, both in space and in time, is of fun
mental importance for a proper design of a unified theoret
model ~for some attempts in this direction see, for instan
Ref. @3#! relating local neuronal dynamics and global a
tributes of sensory processing. This, however, is an
tremely difficult problem since the conscious human brain
never at rest; central control of body function and regulati
fleeting thoughts and feelings, ensure that even in the m
relaxed state a tapestry of regional activations is woven
ery instant. Even the simplest of acts engages a multitud
areas in a way that varies even as the same task is rep
many times. We have studied one of the simplest poss
brain responses: the activity in the human auditory cort
elicited by the presentation of simple tones, delivered re
larly to one or both ears. Even in this very simple and a
ficial scenario, animal@4# and human studies@5,6# have
shown that many different areas are involved. Neverthel
for this case the two auditory areas are known to be ac
and prominent. Magnetoencephalography~MEG! @7# is par-
ticularly appropriate in the present context, because acti
from the auditory cortex is readily identifiable from both th
average MEG signal@8,9# and in single trials@10,11#.

Furthermore, since the two auditory cortices are w
PRE 581063-651X/98/58~5!/6359~9!/$15.00
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separated on either side of the head, the instrument at
disposal, with two separate probes each with 37 chann
was ideal for mapping the magnetic signal: while one pro
senses the signal over the left auditory cortex the othe
sensing the signal over the right auditory cortex. With op
mal sensor location, a very simple linear combination of s
nals can be established to map the activity in each audi
cortex. In effect, from each 37 channel sensor array we m
a virtual sensor~VS! which registers the activity in the adja
cent auditory cortex@11#.

MEG is a completely noninvasive method of measuri
the distribution and time dependence of the magnetic fi
outside the skull. Just like more conventional electroe
cephalography~EEG! it allows one to time resolve neurona
activity on a scale of 1 ms@12#. Its main advantage ove
scalp EEG is that the skull and the scalp are transparen
the magnetic field and, therefore, an external measured m
netic field is not distorted by radial conductivity effects. Fu
thermore, magnetic fields outside the skull are generated
dominantly by currents tangential to the surface of the he
The cortical currents are perpendicular to the surface of
cortex, but almost 70% of the human cortex is folded in
fissures which makes these currents effectively tangentia
the skull and, thus, accessible to MEG. The above aspec
MEG make it particularly suitable for studying the sp
tiotemporal characteristics of the brain dynamics~e.g., Ref.
@13#!. The details of the MEG experiments used to gener
the data analyzed in this paper are presented in Sec. II.

In MEG the response to a stimulus is represented by t
series, one time series for each channel. We use the re
tion of identical stimulus presentations~commonly referred
to as trials or epochs! to compute statistical measures of co
relations or of complexity. We use mutual information~MI !
@14#, a concept related to entropy, to characterize the co
lation between two time series representing left and ri
auditory cortex activity in a single trial. An outline of th
corresponding formalism, including a very useful generali
tion of MI, is given in Sec. III. This formalism is then use
6359 © 1998 The American Physical Society
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6360 PRE 58KWAPIEŃ, DROŻDŻ, LIU, AND IOANNIDES
in Sec. IV to study the long-range cortical correlations
duced by left-ear, right-ear, and binaural auditory stimu
tions. The paper ends with some concluding remarks.

II. DESCRIPTION OF EXPERIMENT

The measurement of the minute magnetic field genera
by the coherent activity of many millions of neurons can
recorded almost routinely today, using superconduct
quantum interference devices~SQUID’s! operating within
shielded environment@7#. The most advanced instrumen
today have well over 100 SQUID’s, allowing for a fairl
dense coverage of sensors all around the head. In this w
we will report a study performed with the twin MAGNE
system of Biomagnetic Technologies Inc.~BTi! in San Di-
ego. This system has two separate dewars, each with 37
order gradiometers. During the experiment, the subje
head was resting on the bottom dewar, while the top de
was placed over the opposite temporal area. Five hea
male volunteers~age 37.869.7) gave their informed consen
to participate in two experiments. Four subjects~JD, JL, FB,
and RB! were right handed, two of them~FB and RB! were
twins, and one subject~DB! was left handed. The first ex
periment, was in two parts~Ex1a and Ex1b!, with a second
experiment, Ex2, performed between Ex1a and Ex1b.
second experiment used similar auditory tones in a stan
GO/NOGO symmetric avoidance protocole. For the purp
of this study the details of Ex2 are not relevant, other tha
was long and it involved auditory stimuli which determine
whether or not a movement was to be made or withheld.
more details, see Ref.@11#. The subject maintained the sam
position throughout Ex1 and Ex2, which was fixed as f
lows: A standard auditory evoked response was first obta
from stimuli delivered to both ears. This response is term
M100; it is the magnetic analog of theN100, a peak in the
EEG signal corresponding to the crest of a negative poten
@12#. The BTi software was used to compute and display
average signal across 120 single trials, while the subjec
mained in place. The inspection of the average signal
used to guide repositioning of the dewars, so that the pro
nentM100 peak was captured with the positive and nega
fields evenly covered by the sensors in each probe. The
cedure was repeated until each dewar was well position
usually in 1–3 placements. Two further runs were obtain
with this optimal dewar position with exactly the same pr
tocol, but with the stimulus delivered first to the left and th
to the right ear. The first part of Ex1~Ex1a! consisted of
three runs: the last dewar placement run with binaural stim
and the two monaural stimulations. The subject then und
went the more demanding and long Ex2. Immediately a
Ex2, with the subject still holding the same position, expe
ment Ex1 was repeated~for most subjects the binaural ton
presentation was omitted!. For both the positioning runs an
the five or six actual runs of Ex1, the stimuli were 50-m
1-kHz tone bursts at 50 dB~a 10-ms rise and fall and
30-ms plateau!. The interstimulus interval was 1
(620 ms). The MEG signal was recorded in continuo
mode, sampled at 1042 Hz and filtered in real time w
0.1-Hz high pass. The analysis to be reported in this pa
used two more signals obtained by further band-pass filte
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in the 1–200 Hz~with notch filters at 50, 100, and 150 Hz!,
and 3–20 Hz.

The biomagnetic inverse problem has no unique soluti
This seemingly unsurmountable obstacle becomes less
midable when physiological constraints are introduced, a
provided the resolution demanded from the data is limited
what is achievable given the sparseness of the sensors
the noise in the data. The extraction of reliable estimate
considerably easier for superficial generators, directly be
a sensor array, i.e., the auditory cortex in our case. The
quirement to analyze single trials poses new problems.
have arrived at a simple but very efficient solution beginn
with powerful, but computationally demanding, method
and an analytic transformation of the signal, theV3 @10#.
Comprehensive tests with computer generated data h
shown that a VS can be designed to respond preferential
activations of superficial focal source. This is similar to e
lier work using a template approach@10#, but here it has been
specifically developed in the context of the 37 chan
MAGNES system to obtain regions of interest rapidly. F
the purposes of our investigation a good VS for audito
cortex activation can be easily obtained from each pro
provided the 37 channels on each side symmetrically cap
the dipolar field distribution at the peak of the average sign
For each probe, we have identified the two channels (k1 and
k2), which produced the maximum difference at the time
the M100 peak, and used them to define the composite

VM100~ t !5(
j 51

37

@e2~ ur j 2rk1
u/l!2

2e2~ ur j 2rk2
u/l!2

#Sj~ t !, ~1!

where l is the characteristic length~we have usedl
50.02 m which is roughly the interchannel separation!; the
results do not depend critically on this value.Sj (t) is the
MEG signal at timet recorded by thej th channel, whose
position vector isr j .

The coefficients of the expansion are computed at
time of theM100 peak in the average signal; these coe
cients are used unchanged for the analysis of all single tr
The computation ofV is very fast, and henceV can be used
to scan through all MEG averaged or single trial signals v
quickly. For the purpose of this present study the VS out
from each probe provides a good estimate of the activity
each auditory cortex. We can therefore use the pair of tim
series in each single trial to study the relationship betw
the left and right cortex activity. Figure 1 summarizes t
setup~a!, shows a typical set of MEG signals~b!, and high-
lights the area of strong sensitivity for the two VS’s, one f
each auditory cortex.

III. MUTUAL INFORMATION
AND ITS GENERALIZED VERSION

In an experiment as described above, the message a
the subsystems ~brain area in this case! behavior is transmit-
ted across the channel of instruments and procedures, an
a result, is represented by the time seriesxs(tn). The sub-
script n indicates that the experiment determinesxs at the
discrete time points and thus induces a partition of the ph
space ofs. This time series maps out the probabilityp( j )
that xs(tn) assumes value characteristic for thej th element
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PRE 58 6361COOPERATIVE DYNAMICS IN AUDITORY BRAIN RESPONSE
of the partition. The average amount of information gain
from such a measurement can be quantified in terms of
entropy,

H~Xs!52(
j

p~ j !lnp~ j !, ~2!

whereXs denotes the whole set of possible messages and
associated probabilities@( j p( j )51# for the subsystems.

If two subsystemss1 and s2 are measured simulta-
neously, as is the case here, then the corresponding prob
ity distributions arep( j 1) and p( j 2), and the most relevant
one is the joint distributionp( j 1 , j 2). For the combined sys-

FIG. 1. Sensor arrangement, signal, and sensitivity profile of
virtual sensor.~a! Coronal and sagittal views showing the sens
arrangement relative to the head and brain.~b! The average MEG
signal for tone presentation to the left ear in the channels of the
and right probes. The channels with the strongest positive and ne
tive signals are marked for each probe. The difference of weigh
sums of channels, with weights decreasing with distance away fr
the highlighted channels define the virtual sensor.~c! By combining
the sensitivity profile~lead field! of each channel according to how
the channel is weighted in the VS sum, we obtain the sensitiv
profile of the VS, which is clearly focused in the auditory cortex
d
e

he

bil-

tem, composed ofs1 ands2, the joint entropyH(Xs1 ,Xs2)
has a form analogous to Eq.~2!. It is easy to verify that

H~Xs1 ,Xs2!<H~Xs1!1H~Xs2!, ~3!

and the equality holds only ifs1 and s2 are statistically
independent, i.e.,p( j 1 , j 2)5p( j 1)p( j 2). The quantity

I ~Xs1 ,Xs2!5H~Xs1!1H~Xs2!2H~Xs1 ,Xs2! ~4!

thus evaluates the amount of information about one of
subsystems resulting from a measurement of the other an
therefore called the mutual information. Generalization
this concept to a larger number of subsystems is straight
ward, and is known as redundancy@15#.

A question of fundamental interest, especially in the co
text described in Sec. I, is whether the spatiotemporal co
lations between the subsystems are caused by spatial un
mity or by information transport. Information transport ma
lead to time-delayed effects in the synchronization of cor
lations. Such effects can easily be quantified by calculat
the time-delayed mutual information between measurem
of the two subsystems at different times. The correspond
prescription retains of course the structure of Eq.~4!; only
the time seriesxs1(t) needs to be correlated withxs2(t
1t). The mutual informationI (Xs1 ,Xs2 ;t) then becomes a
function of the time delayt. It may display a maximum at a
certain finite value oft. This value oft thus provides an
estimate on the time needed for the information to be tra
ported from the subsystemss1 to s2.

There exists@16# an interesting generalization of the co
cept of the information entropy. It reads

Hq~Xs!5
1

12q
ln(

j
pq~ j !. ~5!

For q→1 this equation yields the standard information e
tropy @Eq. ~2!#. The most useful property ofHq(Xs) is that
with increasingq a higher weight is given to the larges
components in the set$p( j )%. This proves very instructive in
studying various aspects of the phase-space exploratio
dynamical systems@17#. Since normally the largest compo
nents are likely to dominate the process of correlating
two subsystems, it seems worthwhile to introduce an an
gous generalization at the level of mutual information.
fact, recent literature@18# considers such a generalization b
mostly for q52 and on a formal level, without fully docu
menting its utility in practical terms.

By making use of the defining Eq.~4!, Hq(Xs) of Eq. ~5!,
the corresponding generalized joint entropy and allowing
time delayt between the time series, after simple algeb
one obtains the following expression for the generalized m
tual information

I q~Xs1 ,Xs2 ;t!5
1

12q
ln
(
j 1

pq~ j 1!(
j 2

pq~ j 2!

(
j 1 j 2

pq~ j 1 , j 2 ;t!

. ~6!

This equation constitutes a basis for numerical applicati
and its utility will be illustrated in Sec. IV.
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A reliable estimate of the entropy requires appropriat
accurate sampling rate in order to determine the probab
distribution p( j ) realistically. For this one needs either
sufficiently long single time series representing a pheno
enon of interest, or, as in the present case of the relati
short time series, one needs a sufficiently large ensemb
such series. When estimatingI q in the latter case one thu
faces two possibilities:~i! I q is calculated independentl
from each time series, and then averaged over an ensem
or ~ii ! the ensemble-averaged probability distribution is us
in Eq. ~6!. Obviously, in general the two operations are n
equivalent for this simple reason that the logarithm and
sum do not commute. It is quite natural to expect that p
scription ~ii ! is more appropriate, as it already results in
smoother behavior on the level of probability distribution
and thus the final result is to a lesser degree contaminate
artificial noisy fluctuations. This statement can be confirm
by explicit numerical verification.

From a general point of view one note of caution is a
needed at this point regardingI q . For q.1 it may happen
that it assumes small negative values, and the fact th
reaches a zero value does not automatically mean tha
subsystems are statistically independent. An inverse impl
tion still holds, however, as forq51: Subsystems which ar
statistically independent lead toI q50. Also, the positive
value of I q for any q means that the subsystems are n
independent. What in this connection is important for us
that the above peculiarity ofI q for q.1 may apply to the
region of very weak correlations only.

IV. RESULTS

Little can be extracted from a single pair of time-serie
We need to consider the ensemble of single trials. We
establish the notation.

From here on we will restrict our attention to the V
output computed as described in Sec. II. Each run is re
sented by two sets of the time series covering the 1-s l
time interval xL

a(tn) and xR
a(tn) @n51, . . .,1042, corre-

sponding to the left~L! and right ~R! hemispheres, respec
tively. The sampling rate is 1042 Hz, sotn112tn
50.96 ms]. The superscripta51, . . .,120 labels the single
trials in each experiment. The time series are consiste
centered such that the onset of the stimulus correspond
n5230. Figure 2 shows three typical, randomly select
single-trial raw time series together with the average

xL,R~ tn!5
1

N(
a

xL,R
a ~ tn! ~7!

over all N5120 trials for the left~a! and right ~b! hemi-
sphere signals, for one subject~JD!.

It is difficult to identify the stimulus onset from the raw
single-trial signal, although a relationship between the p
of the average response can be seen in some of the s
trials. For a more detailed discussion about the relations
between the average signal and the average, see
@10,11#. It is clear that the single trial activity is not dom
nated by the stimulus. Since the background brain activit
not time locked to the stimulus it is averaged out after su
ming up a sufficiently large number of identical trials. Th
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average over the full set of our 120 consecutive trials exh
its a pronouncedM100 peak centered at around 100 ms af
the stimulus onset. At the time of theM100 peak, a numbe
of generators are active; our sensor positioning and the
analysis in each hemisphere disentangles from the MEG
the local collective neuronal response at the superficial
of the auditory cortex. Interestingly, even though the stim
lus is applied asymmetrically~left ear! a similar ~but not
identical! structure is detected on both hemispheres. Thi
consistent with the known auditory pathways which are l
segregated on the contralateral side than in other sen
modalities, namely the visual and somatosensory; an a
tional contribution may arise from long-range interaction b
tween the two cortical auditory areas, which are also kno
to be heavily interconnected via the corpus callossum.

We first explore the variation of mutual information b
tween the two hemispheres, both as a function of the t
delayt and of the frequency. The frequency spectrum of
input data seriesxL,R(tn) is determined by their discrete Fou
rier transform as

XL,R~k!5 (
n51

N

xL,R~ tn!exp~2p ink/N!, ~8!

XL,R(k) being the complex numbers @XL,R(k)
5uXL,R(k)uexp„ih(k)…‡. By inverting this transformation in
a reduced interval̂K2DK/2,K1DK/2& of discrete frequen-
ciesk, one obtains the filtered seriesxL,R

K,DK(tn) spanning the
frequency windowDK centered atK:

xL,R
K,DK~ tn!5

1

DK (
k5K2DK/2

K1DK/2

XL,R~k!exp~22p ink/N!.

~9!

FIG. 2. Three randomly selected raw MEG time series~dashed,
dash-dotted, and dotted lines! vs the average over the whole set
120 of them for the subject JD and left ear stimulation. The up
part illustrates the right hemisphere, and the lower part the
hemisphere behavior.
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Determining a minimum value ofDK which can safely be
used in the present context requires some care. The poi
that, if the value is too small, artificial correlations may
generated in the mutual information of filtered time series
an extreme limit, one frequency component will always
correlated in some way. What preserves or washes out
correlations in finite frequency windows is the relatio
among amplitudes of different frequency components.
determine a reasonable minimum value ofDK, such that no
artificial correlations are induced, self-consistently; we ma
use of the surrogate time-series of the original ones.
surrogates are obtained by randomizing the phasesh(k) of
XL,R(k), and making use of Eq.~9!. This operation preserve
the power spectrum of the original series. By calculating
mutual information of the so generated surrogates ofxL(tn)
andxR(tn), we findDK equivalent to 4 Hz as an appropria
minimum frequency window for our data. Below this valu
some correlations may show up even on the level of su
gates.

Figure 3 shows the landscape of the mutual informat
(q51) in the time delayt and in the frequency window of 5
Hz centered at the value indicated. This was one of the
periments on subject JD. The results of the other experim
for the same subject look similar.

When making use of Eq.~6!, here, as well as in the whol
following discussion, a grid of ten bins covering an interv
of variation of bothxR

a(tn) andxL
a(tn1t) is introduced. This

guarantees the stability of the results. For a given experim
the three different probability distributions entering Eq.~6!
are evaluated by superimposing histograms correspondin
all the time series (a51, . . .,120), and then the logarithm i
taken. As mentioned before, one could also calculate MI
each a separately and then average overa, but for the
present data such a procedure turns out highly unsatisfac
in terms of statistics; it results in a much higher level
noisy background fluctuations.

The MI displayed in Fig. 3 is calculated from the who
1s (n51, . . .,1042) time interval. Its specifict dependence
will be discussed in full detail later, and Fig. 3 is basica
supposed to illustrate the frequency localization of sign
cant correlations. As it is clearly seen, such correlations
mediated by the low-frequency~up to 20 Hz! activity. This
picture turns out to be subject independent. The amplitud

FIG. 3. Time-delayed MI as a function of the frequency~fre-
quency window of 5 Hz! for subject JD, left ear stimulation.
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MI is found to depend from subject to subject, however. F
certain subjects the correlations are so weak that they
hardly identifiable on the level ofq51 MI. For this reason
we first explore a possible advantage of using the general
MI as allowed by Eq.~6!. According to the above frequenc
localization, and in order to make the following study mo
transparent, all the time series used will be filtered to a f
quency window between 3 and 20 Hz. Furthermore, si
correlations are mainly connected with appearance of
M100 peak, the time series will be truncated to the inter
betweeni 5230 and 491. This covers 250 ms, starting e
actly at the initial moment of the stimulus.

The benefit of using the higher-q MI is documented in
Fig. 4. This figure illustrates theq dependence (q51,2,4,
and 6! of the generalized mutual information for the tw
examples: strong correlations~JD! and weak correlations
~FB!. Clearly, the higher-q values offer a much more precis
estimate of the time delayt at maximum. This originates
from the fact that increasingq gives a greater weight to
larger components in the probability distribution, and th
turns out to be especially important for the cases of we
correlations. For this reason a summary of the results of
experiments, for all five subjects, as displayed in Fig. 5
done forq56. A convention used in the corresponding ca
culation when defining the sign of the time delayt between
xL(tn) and xR(tn1t) is such that its negative value mea
that a relevant excitation in the right hemisphere is time
vanced relative to the left hemisphere. Of course, the op
site applies for positive sign.

FIG. 4. Two examples of theq dependence of generalized M
~for q51, 2, 4, and 6!. The upper part corresponds to JD~strong
correlations! and the lower part to FB~weak correlations!.
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FIG. 5. q56 MI as a function of the time-delay for all five subjects calculated from the time interval between 0~stimulus onset! and 250
ms. The left column corresponds to the experiment Ex1a, and the right column to the experiment Ex1b. The solid line displays the
of the left ear stimulation, the dashed line that of the right ear stimulation, and the dash-dotted line represents the binaural~only Ex1a!
stimulation.~b! The same as~a!, calculated from the 230-ms-long time interval starting 230 ms before the stimulus onset.~c! The same as
~a! calculated from the time-interval between 251 and 500 ms.
m
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here
tud-

a

Several conclusions are to be drawn from Fig. 5~a!. First
of all, the correlations under study are spatially nonunifor
and the information transport between the hemispheres t
about 10 ms. The relative location of the peaks in MI in
,
es

-

cates that, at least statistically, the contralateral hemisp
drives the response for all the subjects and conditions s
ied. This, however, can in general only be identified by
parallel analysis of the left versus right ear stimulation~bin-
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aural is also helpful! of the same subject. The point is that f
some subjects there are certain asymmetry effects. Fo
stance, in JL the ipsilateral hemisphere somewhat overta
(;5 ms) when the right ear is stimulated, but then t
contralateral hemisphere overtakes even more when the
is delivered to the other ear, so that the relative location
the peaks in MI, corresponding to the left and right e
stimulation, respectively, is still preserved. This asymme
in JL disappears in the experiment Ex1b, however. A trace
asymmetry, but in opposite direction, is also visible in J
again more in Ex1a than in Ex1b. A likely explanation f
those asymmetry effects is that we are facing a superpos
of the two phenomena. One is a leading role of the contra
eral hemisphere when the tone is delivered to one ear~either
left or right!, and the other may originate from certain su
ject specific asymmetries in properties of the left and ri
auditory areas. The latter kind of asymmetry is known
occur quite frequently@12#.

Figures 5~b! and 5~c! illustrate the same quantities for th
time-intervals just before the stimulus onset (2230 to 0 ms!
and soon after theM100 period~251–500 ms!, respectively.
The picture changes significantly. Except for JD the corre
tions essentially disappear. JD seems to display certain
manent interhemispherical correlations, but here they
considerably weaker and always driven by the left he
sphere. This supports the claim that the correlations un
study are primarily associated with the stimulus.

FIG. 6. Averaged MEG time series over all 120 trials for fo
different subjects corresponding to the left ear~LE!, right ear~RE!,
and binaural~B! stimulation. The solid line displays the left hem
sphere and the dashed line the right hemisphere response.
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Another interesting quantity is the strength of informati
transfer between the hemispheres. This characteristic m
sured in terms of the MI excess over background is larg
invariant for a given subject~similar for different experi-
ments!. It is, however, strongly subject dependent and ran
between very pronounced~JD! and rather weak~FB and
RB!. A related question that emerges in this connection
whether this effect results from different strength of the co
pling between the hemispheres, or whether this is due to
fact that localM100 excitations differ in their degree of co
lectivity. That the second possibility is more likely to app
here can be concluded from Fig. 6, which shows the av
aged~over 120 trials! MEG time series for JD, DB, JL, and
FB ~RB looks similar to FB!. This figure illustrates both the
left and the right hemisphere responses generated by
right, and binaural stimulations. The results shown also d
play left-right hemispherical asymmetry for JD and JL, o
ented consistently with the results of Fig. 5~a!. The magni-
tude of the amplitude of the so quantified response reflec
degree of neuronal synchrony developing theM100 complex
in each case, and this amplitude goes in parallel with
strength of the information transport@Fig. 5~a!#. This, in a
sense, is natural since the amount of information to be co
municated results from the original local collectivity. It
also consistent with the low-frequency origin of interhem
spherical correlations, as illustrated in Fig. 3. Localization
frequency means higher synchrony and more determini
and these, in general, constitute preferential conditions
the long-range interhemispherical correlations to occur.

Such conclusion receives further support from the str
ture of the power spectrumP(k) ~squared modulus of the
Fourier transform! of the time series. These power spec
are calculated from the original time seriesxL,R(t) represent-
ing the whole specific experiment lasting 120 s, and
shown in Fig. 7 for the two extreme cases, JD and FB,

FIG. 7. Power spectrumP(k) of the full MEG time series as a
function of the frequencyk. The upper part illustrates a typica
behavior for JD, and the lower part one for FB. The depth at 50
is due to the notch filter applied at this frequency.
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spectively. The cases of stronger correlations~JD! are ac-
companied by the power spectra that have the low
frequency part significantly amplified relative to the cases
weak correlations~FB and RB!. The opposite applies to th
high-frequency region. The weak correlations are thus c
nected with a more noisy dynamics which acts destructiv
on local coherence and, consequently, on long-range co
lations. It is, however, interesting to notice that even in t
case the power spectrum is not completely flat as for
white noise phenomena, but shows a nice ‘‘1/f ’’-type
~straight line of finite negative slope in the log-log sca!
behavior@19#. For JD this behavior is not that nice, but th
deviation seems to be largely attributable to the perman
activity at 8 Hz (a rhythm!, consistent with the previou
discussion. In fact, this kind of power spectrum one m
anticipate already by looking at theM100 wave form seen in
the average signal~Fig. 6!, and taking into account its func
tional similarity to the QRS complex of the electrocardi
gram. This complex develops the inverse power-law sp
trum which some interpret in terms of the fractal characte
the cardiac His-Purkinje conduction system@20#. Of course,
because of a strong permanent brain activity, it is much m
difficult to disentangle precisely from the background a co
tribution to the MEG power spectrum of a specific structu
such asM100. Therefore, the discussion related to Fig. 7 c
only be treated as an indication that theM100 complex may
itself obey an inverse power-law. On the level of an avera
time series~Fig. 6! it can also be verified that this is true
although the statistics is then poorer. The related quest
are, however, not the central issue of the present paper
will be the subject of our independent, more systematic,
ture study, both on an experimental as well as a theore
level.

Finally, as a way to understanding the mechanism of
terhemispherical correlations, it is instructive to look at M
betweenxL

a(t) and xR
a1D(t) for DÞ0. Figure 8 shows that

surprisingly, such correlations are much weaker for both s
jects~as well as for all remaining!. This result indicates tha
what actually correlates the opposite hemispheres in
present context is not just an independent appearanc
M100 in both hemispheres but the real interhemispher
information transport which projects oneM100 into another
and thus induces certain similarity between them. They
thus functionally related, and this is what the mutual info
mation reflects. On the other hand, the specific evolution
M100 with respect to consecutive trials must involve non
terministic elements which make the above, translated co
lations much weaker. This means that only the global asp
of M100 are time locked to the stimulus; a detailed ‘‘micr
scopic’’ evolution turns out largely stochastic.

Besides the interhemispherical information transport d
cussed above, there potentially exists another mechanism
pable of introducing a time delay in the mutual informatio
namely, a common driver which independently activa
each path at separate times. Such a mechanism does
however, seem to be able to explain such a signific
change of correlations, as shown in Fig. 8.

V. CONCLUSIONS

The present study provides clear quantitative evidence
two levels of dynamical cooperation in the brain audito
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processing. One is the local hemispherical collective
sponse, reaching its maximum at about 100 ms (M100) after
a stimulus onset. An interesting emerging aspect of this
citation is that its only global characteristics are time lock
to a stimulus. The underlying neuronal degrees of freed
involved are likely to differ significantly from trial to trial.
Such a behavior is known to occur in certain rather stand
neural network models@21#. A possible scenario, howeve
potentially able to reconcile these two aspects of evolution
the M100 and the inverse power-law character of the cor
sponding power spectrum, is self-organized criticality@22#
which is a more catastrophic form of collectivity and is ge
erated by a fractal~scale-invariant! ‘‘avalanche’’-like pro-
cess. Interestingly, a new class of neural networks base
adaptive performance networks@23# shows exactly this type
of power spectra. It also allows some local deviations fro
this behavior, and those deviations result from certain sub
specific stronger activity at some frequency. This model
volving the elements of self-organized criticality can
trained@24# to react ‘‘intelligently’’ to external sensory sig
nals. Such a scenario also goes in parallel with our rec
suggestion that the single trial activity induced in the au
tory cortex by a simple tone cannot be treated as a determ
istic response emerging from a noisy background@10,11#.

The second level of cooperation is the communicat
between the two hemispheres. The most conclusive in
connection are the monaural stimulations. The analysis t
shows that, at least statistically, the contralateral hemisph
systematically leads by 10–20 ms. The mechanism of t
communication carries the signature of~delayed! synchroni-
zation and thus can be hypothesized as a direct informa
transport between the hemispheres.

An independent conclusion to be drawn from our study

FIG. 8. Two examples~for JD and FB! of q56 MI between the
time series representing different trials, i.e.,xL

a(t) is correlated with
xR

a1D(t). D50 corresponds to the solid line~original case!, D51 to
the dotted line,D54 to the dash-dotted line, andD510 to the
dashed line.
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that mutual information~MI ! and, especially, its generaliza
tion, provides a useful and statistically appropriate formali
for studying the temporal aspects of correlations in compl
dynamical systems, even if, as here, such systems are r
sented by relatively short time series.
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